
 Readings Averaging 
Accelerator protocol feature for local stations

Sep 15, 1991

Introduction
The Linac operates at 15 Hz, and each cycle may or may not produce beam, 

according to the accelerator timing system clock events. For normal viewing of Linac 
device readings, as on a parameter page, it has been traditional for many years to 
display reading values averaged over beam pulses only, ignoring the pulses which 
have no beam. In the case that there are no beam pulses occurring in the averaging 
interval, then the average of readings for all cycles in the interval is shown. The 
averaging logic serves two purposes. The first is that data from beam pulses is selected 
preferentially over that from non-beam pulses. The second is that fluctuations are 
reduced in the displayed values.

The averaging logic has always been done by the application program that needs the 
values. In order to do it, the application must be aware of which cycles are beam 
cycles. This information is available at each Linac local station by a status bit that is 
wired to all stations. Note that this signal indicates that beam is scheduled to be 
delivered by the Linac; it does not guarantee that protons will in fact be accelerated. But 
it serves to provide a proper value to display beam-related data, such as beam current 
toroid readings. If a beam current reading were used in place of a status bit value to 
determine whether a pulse was a beam pulse, then it would not display correctly 
under conditions of low beam currents below the threshold value used for that 
determination.

The local station parameter page (on the small consoles) checks its own local beam 
status bit to decide whether the present cycle is a beam cycle. The Macintosh 
parameter page (written by Bob Peters) uses a pseudo-channel value from a specific 
local station that contains the same information. The Vax parameter page (written by 
Jim Smedinghoff) uses a beam toroid reading.

When the beam cycle status information is delivered over the network, rather than 
measured locally as in the local stations themselves, there is an additional problem of 
correlation with the present cycle’s data. If the data to be averaged comes from a 
different source node than the beam status, one must insure that the beam status is 
known from the same cycle; otherwise, the average value may be diluted, especially 
for beam toroid readings. The Macintosh parameter page uses the data server for its 
requests, so the pseudo-channel reading is delivered in the same message along with 
the data to be averaged.

In case of the Vax parameter page, the data may not be deliverable in a single message 
until the entire Linac controls upgrade is in place, and all Linac data is requested from 
the Linac data server node. In the interim, while some Linac data comes via the PDP-11 
front end and some comes from the server node or from a specific node, correlating 
the data from different sources may be difficult. This is especially true because the Vax 
data pool manager (DPM) does not provide support for 15 Hz correlated data, even 
when it does come from a single node; a requester only gets (via DPGET) the last value 
of a given data item that was received. Another data item is obtained by a separate call 
to DPGET, and there is no guarantee that another cycle’s data message has not been 
received since the first call. In fairness, it should be pointed out that one can obtain a 
sequence number for each item to determine whether new data has been received, but 
there is no way to insure that one can capture correlated data, even when the network 



actually delivers it. For Linac studies, this is a serious limitation of the accelerator 
control system, in the opinion of this writer.

In part because of the difficulties mentioned above, people have several times 
requested that the local stations perform the averaging logic. I have resisted this 
suggestion in the past because it seems to me that it amounts to placing application-
specific code in the local station. One does not want to reach a point where 
applications can only be written on the Vax by adding application-dependent code to 
the local station system software as well. The local station’s main job is to deliver the 
data to any and all requesters; what a requester does with that data should be up to the 
application program completely. In this case, however, the reality of the situation is 
that the Vax software is not designed to retrieve correlated 15 Hz data. If support for 
average data readings is to be provided to Vax applications, such as the parameter 
page, it may have to be done by the local station software.

Implementation
Although the averaging logic is well-known, it does not easily fit into local station 

support for data requests. The idea of averaging all data readings in the local station is 
rejected a priori; therefore, the support should be provided on a request basis. How 
does one specify to the local station that average values are needed? One suggestion is 
that a request period which is neither one-shot nor 15 Hz would be the indicator that 
average values are desired. The notion here is that sampling data from a 15 Hz Linac 
at other than 15 Hz is at best a hit-or-miss proposition and not for serious data-taking. 
Of course, given the averaging logic as stated above, the result of “averaging” data 
readings from a single pulse must be the same as the single reading from that pulse, 
independent of whether it was a beam pulse. This means that all readings could be 
treated with the same logic without regard for the data request period.

For the accelerator data request protocol supported by the RETDAT network task logic, 
which is the protocol used by the Vax consoles, each device request packet included in 
a data request message contains an SSDN. Inside the SSDN is a listype#, the 
fundamental data type specification used for local station data requests. In order to 
provide reading values useful for plotting as well as as for display without making up 
new names for accessing device averaged readings, the same listype# should be used. 
To detect the need for averaging data in a request, a scan must be made for the use of 
the readings listype# (which = 0) in any data request packet. Also, the check could be 
made for the reading property index where two bytes of data are requested. Note that 
we only want to average analog readings. There is a potential problem with using the 
readings listype# as a key. We will be providing reading words as basic status values 
that contain collections of status bits. This will be done to provide a name and alarm 
mask for such assembled status words. We should therefore include the check on the 
reading property.

Internally, the averaging requires additional storage for the accumulation of reading 
values over the beam cycles (or the non-beam cycles in the absence of beam cycles) for 
each device for which a reading is requested.

The request period is used to specify the averaging interval. This interval is not 
synchronized with anything but 15 Hz cycles. For the Linac which often delivers 13 
successive pulses of beam to the Booster, the averaging interval may not include the 
entire sequence of 13. This points out one advantage of doing the averaging logic in an 
application, where an adjustment can be made to synchronize the averaging interval 

Readings Averaging p. 2



to such bursts of beam pulses for display purposes. A periodic request does not 
specify this kind of “breathing” logic. If it were done, a Vax program might not mind, 
but the server node might have a problem adjusting to it, since the server node 
delivers replies to requests at times which depend only on the fixed request period 
intervals. On the other hand, since the server is not doing the averaging, its last data 
readings received from the contributing nodes will already be averages. If the server 
node does not mind the “breathing” in the timing of the contributing nodes, it might 
be ok. (The server node is not given the job of doing the averaging because it is already 
a bottleneck by design, and it would require collecting the data from the contributing 
nodes at 15 Hz, while only delivering 1 Hz replies to the consoles. If the averaging is 
done locally by each contributing node, then the load is distributed; and the load is 
also much less, because those nodes only send their average values at 1 Hz to the 
server.) Another value in having the application program support averaging is that the 
count of the number of beam pulses present in the accumulation of the average can be 
shown on the display as well. This was done in the olden days for the Linac-only 
parameter page.

Details
Concentrate on the logic involved in support for the non-server request using the 

accelerator protocol. (All accelerator protocol logic is in the ACREQS module.) One 
memory block used in support of these requests is the type#14 internal ptrs block. 
Each device in a data request is “compiled” into an internal ptr, which is used to 
facilitate update of the reply data. Most often, the value of an internal ptr is the 
memory address of the data to be returned. Specifically, in the case of a request for an 
analog reading, the internal ptr is the address of the reading data word as it resides in 
the appropriate field of the ADATA table entry. This makes access to the data value for 
the purpose of updating the reply data quite trivial.

To support averaging, we still want to maintain a ptr to the reading field, but we must 
also maintain a longword accumulation value. The allocation of memory needed for 
the internal ptrs block depends upon the number of internal ptrs needed. We must 
add an extra longword for each internal ptr that needs to support averaging. During 
the scan in the NSERVER routine, we should detect the need for this extra space for the 
internal ptrs block and increase the value of NPTOTAL accordingly, since it is used later 
to allocate the internal ptrs block. The space for the averaging case will be two 
longwords per device; the first will be the usual internal ptr value, and the second will 
be the accumulation longword.

In addition, for the entire request, we need to keep two counters. One is FTDC, the 
count of cycles over the request period, and the other is SUMC, the number of cycles of 
data that have been added to produce the accumulation. Also, there must be a state bit 
that records whether the accumulation holds data from beam cycles or non-beam 
cycles.

Until now, a call to ACUPDATE from ACUPDCHK produces a new reply to a data 
request. To support this new feature, we must do some accumulation work every cycle, 
not just the cycles on which a reply is due. A test for the need of accumulation logic is 
required in ACUPDCHK before ACUPDATE is called.

During initialization of the non-server request, each device request block (DRB) which 
needs the special averaging treatment is marked by setting the sign bit of the RDI 
word in the DRB. (The RDI word contains the read-type routine index and is a small 

Readings Averaging p. 3



integer used in the READTYPE call to update the answers corresponding to that DRB.) 
The test for the need of the averaging logic is that the reading property index (=12 
decimal) is used, the listype for analog reading (=0) is used, and the #bytes requested 
is 2. The internal ptr for this analog reading case will of course be the pointer to the 
reading word in the analog channel ADATA entry, so the accumulation logic is simple. 
If other listypes should need averaging support in the future, they might be 
additionally permitted. As stated before, the number of internal ptrs required should 
double for such DRB’s to allow room in the internal ptrs block allocated later for the 
longword needed for the accumulations. Set a flag so that the internal ptrs block 
header can be marked to indicate that averaging logic is needed by at least one DRB in 
the request.

For each cycle of a request that needs the averaging logic applied, according to this 
flag in the internal ptrs block header, the DRB’s are scanned in AVGACCUM. For each 
DRB marked in its RDI word, accumulations of the current readings are made 
according to the averaging algorithm.

Later, during the update scan at the end of the periodic request interval, the sign bit of 
the RDI word is tested to direct the updating loop to calculate and return the average 
of the accumulations as the result word, rather than call the usual updating loop. Note 
that the data values were already accumulated in AVGACCUM before the call to 
ACUPDATE. All that is necessary is to divide by the number of data values 
accumulated to obtain the average.

Postscript
This document was a working document used to explore an implementation that 

would accomplish this averaging feature for the local stations. Most of it was written 
before the code was started, but it is now updated to reflect what was done to 
implement the feature. The implementation required 140 lines of source code, about 
350 bytes of object code and two days of coding and documentation effort beyond the 
initial design discussions and contemplation.

Readings Averaging p. 4


